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Model building is a pivotal step in protein-structure determi-

nation, because with an atomic model available the vast

amount of geometrical prior knowledge may be applied to the

structure-determination process. Here, conditional optimiza-

tion, a method that does not require interpretation of the

electron-density map, is described. Instead, this method

re®nes loose atoms for which all chemical interpretations

are considered simultaneously using an N-particle formalism.

This method bears the potential of introducing the geome-

trical data much earlier in the structure-determination process,

i.e. well before an interpretable electron-density map has been

obtained. Here, results from two tests are presented:

automated model building of three proteins with diffraction

data extending to 2.4±3.0 AÊ resolution and ab initio phasing of

a small four-helical bundle with diffraction data to 2.0 AÊ

resolution. Models built automatically by the widely used

programs ARP/wARP and RESOLVE and those from

conditional optimization per se, without discrete modelling

steps, had comparable phase quality and completeness, except

in loop regions, which are poorly modelled by the current

force ®eld in conditional optimization. Optimization of

multiple random starting models by conditional optimization

yielded models revealing the four helices of the four-helical

bundle.
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1. Introduction

In protein crystallography, the generation of an atomic model

of the molecules is a crucial step in the structure-determina-

tion process. With an atomic model available, the vast amount

of geometrical data of protein structures can be applied in

structure re®nement in order to generate better phases and a

better atomic model. In practice, an atomic model can only be

generated when suf®cient phase information has been

obtained either by experimental means or through the use of

known homologous structures to produce an interpretable

electron-density map. The model-building task may be far

from straightforward, because the phase information may be

poor and the resolution of the diffraction data may be limited.

For maps at high resolution (d� 2.2 AÊ ) and with good starting

phases, automation of the model-building process has been

highly successful in recent years (Perrakis et al., 1999). Auto-

mation has reduced enormously the amount of time involved

in manual model building using computer graphics programs.

Currently, various approaches are being developed to improve

the pattern recognition of protein structural features in the

electron-density maps (Terwilliger, 2003; Holton et al., 2000;

Levitt, 2001) so that automated model building can deal with

lower resolution data and poorer phase information. None-

theless, at increasingly lower resolution and with poorer phase

information the interpretation will become increasingly



unreliable. In such cases, the quality of the electron-density

map may not allow unique identi®cation of molecular frag-

ments and hence may not allow the assignment of chemical

identities to the atoms present in the model. Similar to the

treatment of X-ray diffraction data in maximum-likelihood

re®nement, introduction of the geometrical data would then

require a statistical procedure in which all possible assign-

ments are taken into account simultaneously instead of testing

individual assignment hypotheses. In recent years, we have

developed such an approach that we call `Conditional Opti-

mization' (Scheres & Gros, 2001, 2003). Such a treatment of an

ensemble of structural hypotheses instead of single hypotheses

creates the possibility of using the geometrical prior infor-

mation at an earlier stage in the structure-determination

process, thereby merging the steps of phasing, model building

and re®nement further than current practice.

The most widely applied automated modelling procedure is

ARP/wARP, developed by Lamzin, Perrakis and coworkers

(Lamzin & Wilson, 1993; Perrakis et al., 1999; Morris et al.,

2002). ARP/wARP presents a powerful iterative combination

of loose-atom positioning, recognition of protein fragments

from the distribution of atoms and re®nement of the loose

atoms and the pieces of assigned protein fragments by

REFMAC (Murshudov et al., 1997). Though originally limited

to diffraction data with resolution limits extending beyond

d ' 2.3 AÊ , recent (Morris et al., 2002) and current develop-

ments in pattern recognition (discussed by Cohen et al., 2004)

appear to make this approach feasible at lower resolution

limits (d � 2.6 AÊ ). Because of the coupling of re®nement with

the process of model building, the resulting models are typi-

cally accurate and signi®cant phase improvements are

observed. Discrete modelling steps ensure that the model is

completed, generating as much as possible of a continuous

main chain and assigning side chains using the amino-acid

sequence. Other approaches, e.g. RESOLVE (Terwilliger,

2001, 2003, 2004) and MAID (Levitt, 2001), have been

developed that start by positioning fragments into the

electron-density map instead of generating fragments from

loose-atom positions. These methods have the potential to be

applied to data with lower resolution limits. Based on a set of

diverse proteins, Badger (2003) reports signi®cant success in

building �75% of the main chain with these two methods

using maps at 2.3±2.7 AÊ resolution. To some extent similar to

ARP/wARP, the approach in RESOLVE (Terwilliger, 2003)

consists of an iterative procedure of placing fragments,

extending the model into loop regions, docking of the primary

sequence alternated by maximum-likelihood density modi®-

cation and restrained protein-structure re®nement using

REFMAC (Murshudov et al., 1997).

In two recent publications (Scheres & Gros, 2001, 2003) we

presented the method of `Conditional Optimization'. At the

heart of this approach is an N-particle method in which we

assign all possible chemical identities to atoms based on their

spatial arrangement. Through this method, we can express

prior geometrical knowledge without the requirement for a

topological model. For the assignments of chemical identities

and possible topologies we use sets of conditions, which are

continuous scoring functions [C = (0, 1)] that express target

values of observed interatomic distances and dihedral angles

in known protein structures (see, for example, Figs. 2 and 4 in

Scheres & Gros, 2001). In addition to these `through-bond'

conditions, the formulation includes local atomic density

conditions describing the observed packing density for atom

types (Fig. 3 of Scheres & Gros, 2001). These various types of

conditions lend themselves to a logical organization in what

we have called layers: layer 0 (atoms de®ned by local atomic

density conditions), layer 1 (bond conditions), layer 2 (angle

conditions) etc. Assignment of a particular fragment to a set of

atoms is then determined by multiplication of conditions into

joint conditions. The combinations of conditions for atom

types, bond types, angle types etc. is made according to the

topology of protein molecules (strictly speaking, we consider

not only topology but also distinct conformations since the

scoring functions are based on the spatial arrangement of the

atoms). In this way, any arbitrary set of atoms is evaluated.

However, since zero-scoring conditions yield zero-scoring

joint conditions (and zero derivatives), we need to consider

only non-zero interactions in our computations. Effectively,

each joint condition represents a single assignment hypothesis.

An example of the conditions making up one hypothesis is

depicted in Fig. 1 of Scheres & Gros (2003). The number of

hypotheses that can thus be made for a protein structure is of

the order of the number of atoms times the number of layers.

Considering only a maximum number of layers implies that

the number of hypotheses depends linearly on the number of

atoms. Therefore, an algorithm based on this formulation is of

order N, which makes the computational problem of making

assignments tractable. As target functions in the optimization

process, we choose harmonic potentials that restrain the

number of occurrences of structural fragments associated with

joint conditions to the expected number based on sequence

and secondary-structure prediction. Since we choose to use

only continuous functions in the calculation of the (joint)

conditions, we can compute derivatives that can be used in an

optimization process.

In the ®rst paper (Scheres & Gros, 2001), we showed that

Conditional Optimization successfully built the helices of a

four-helical bundle starting from randomly distributed atoms

in a simple arti®cial test case with 2 AÊ resolution diffraction

data. In the second paper (Scheres & Gros, 2003), the set of

conditions was extended to treat commonly observed

conformations in proteins: �-helices, �-sheets, a limited

number of loop conformations and side chains up to the 

position. Re®nement of three protein structures with large

randomly generated coordinate errors against their 2 AÊ

resolution diffraction data showed that Conditional Optimi-

zation has a large radius of convergence.

Here, we report two types of tests of Conditional Optimi-

zation: automated model building and ab initio modelling. The

most powerful approach in automated model building would

be an iterated process of re®nement cycles and discrete model-

building steps, as is performed in ARP/wARP and RESOLVE.

However, rather than providing a ready-to-use solution, we

chose to ®rst test the potential of Conditional Optimization
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per se in the model-building process. Therefore, in the calcu-

lations presented here no pattern-recognition or model-

building techniques were applied other than the conditional

formulation itself. Using three test cases from our own

laboratory with resolution limits of 2.4, 2.6 and 3.0 AÊ and good

experimental phases, we compared Conditional Optimization

to the commonly used programs ARP/wARP and RESOLVE.

To test the potential of the method for phasing, we applied

Conditional Optimization starting from multiple models of

randomly distributed atoms. This time (cf. Scheres & Gros,

2001), we used the experimental structure-factor amplitudes

of the four-helical bundle Alpha-1

(PriveÂ et al., 1999).

2. Experimental

2.1. Test in automated model building

Three protein structures were

selected for testing Conditional Opti-

mization for automated model building:

(i) the A3-domain from human von

Willebrand Factor, vWF-A3 (Huizinga

et al., 1997), (ii) outer-membrane

protein NspA from Neisseria meningi-

tidis (Vandeputte-Rutten et al., 2003)

and (iii) the C-terminal domain of leech

anti-platelet protein, LAPP (Huizinga

et al., 2001). All three structures were

solved in our laboratory at medium to

low resolution (2.4±3.0 AÊ resolution)

and with good experimental phases. For

all cases, the original models were built

manually using the graphics program O

(Jones et al., 1991). The main char-

acteristics of these test cases are given in

Table 1.

Fig. 1(a) shows the protocol used for

automated model building by Condi-

tional Optimization. The process was

started by positioning loose and unla-

belled atoms in the (m|Fobs|exp{i'best})

electron-density map at sites with � >

1.0�, with minimum and maximum

interatomic distances of 1.1 and 1.8 AÊ ,

respectively, and a maximum of four

neighbouring atoms within 1.8 AÊ . Opti-

mization was performed using the

program CNS (BruÈ nger et al., 1998). For

the crystallographic target function, we

used the phase-restrained maximum-

likelihood function (MLHL; Pannu et

al., 1998) with phases and ®gures of

merit from the experimental phasing

process (Table 1). �A values (Read,

1986) were estimated using test-set

re¯ections. For the geometric target

functions we used the conditional formulation (Scheres &

Gros, 2001, 2003). For each protein, a speci®c force ®eld was

generated using the general parameter list of conditions for

�-helices, �-strands, loops and side chains up to 
-positions

(Scheres & Gros, 2003) and an approximate estimate of the

secondary-structure content (see Table 1). In the case of

LAPP we set the loop content to 0, thereby excluding loop

conformations from the force ®eld, to limit computer memory

requirements. At the end of each cycle of Conditional Opti-

mization (Fig. 1a), we assigned atom labels based on the

implicit assignments used in the Conditional Optimization

Figure 1
Protocols for automated model building and ab initio modelling. (a) Automated model building by
Conditional Optimization using the program CNS (BruÈ nger et al., 1998). The standard geometrical
target functions were replaced by our conditional formulation (see main text). Electron-density
maps were ®lled with loose atoms (as described in the main text). Re®nement cycles used the
MLHL crystallographic target function and consisted of 10 000 steps of dynamics (denoted `dyn.')
and 200 steps energy minimization (`min.'). Velocities in the dynamics calculations were scaled to a
constant temperature of 600 K. Overall anisotropic B-factor scaling, bulk-solvent correction, �A

estimation, determination of wa weight and phase combination were performed using standard CNS
routines. After each cycle, the positions of atoms that could be assigned to protein fragments (see
main text) were maintained in the model. Placing the remaining number of atoms in the phase-
combined electron-density map completed the starting model for a next cycle of optimization. (b)
Multiple-model optimization protocol starting from N models of randomly distributed atoms. The
CNS program was used with conditional formulation for the geometrical target functions. First, a
short condensation step was performed for each model with 200 steps of minimization and 1000
steps of dynamics followed by 200 steps minimization using the MLF crystallographic target
function. Subsequent optimization cycles consisted of 200 steps of minimization, 10 000 steps of
dynamics and 200 steps of minimization using the MLHL crystallographic target function. Phases of
the averaged structure factors and ®gures of merit (ma) were used in the phase restraint (see main
text). The phased-translation function was used to put the N models on a common origin prior to
averaging. The bulk-solvent model was generated for 20%(v/v); atoms present in solvent regions
were given zero occupancy.



process. Atoms were labelled with a chemical identity (N, C�,

O, C, C�, C
 or S
) if the gradient contribution towards that

particular atom type was at least twice as large as the second

largest contribution. Subsequent cycles of optimization were

started from phase-combined maps, combining model and

experimental phases. Subsequent starting models consisted of

the atoms (but not their labels) selected in our labelling

procedure with additional atoms placed in the electron-

density map as described above. For vWF-A3 and NspA two

cycles and for LAPP four cycles of model building by

Conditional Optimization were performed.

All three test cases were also subjected to automated model

building by ARP/wARP (version 6.0; Perrakis et al., 1999;

Morris et al., 2002) and RESOLVE (version 2.03; Terwilliger,

2003), both using REFMAC version 5.1.24 for re®nement

(Murshudov et al., 1997). These calculations were performed

using default values for all input parameters. In RESOLVE,

docking of the primary sequence on the constructed fragments

by side-chain modelling was included in the model-building

process. Modelling of the side chains was not performed with

ARP/wARP, since this option of the program yielded signi®-

cantly worse results (not shown).

2.2. Testing ab initio modelling

We selected the four-helical bundle Alpha-1 (PriveÂ et al.,

1999; PDB code 1byz) to explore the potentials of Conditional

Optimization in ab initio phasing. This structure consists of 396

protein atoms in space group P1 and was originally solved by

direct methods using all observed diffraction data to 0.9 AÊ

resolution. Here, we truncated deposited structure-factor

amplitudes to 2.0 AÊ resolution.

The protocol used to re®ne N multiple models using

Conditional Optimization is given in Fig. 1(b). The number of

atoms per model was 400. Initial models consisted of randomly

distributed atoms. Calculations were performed using the

program CNS (BruÈ nger et al., 1998). The target functions from

Conditional Optimization replaced the standard geometric

target functions. The random models were ®rst subjected to

1000 steps of maximum-likelihood re®nement using structure-

factor amplitudes (MLF; Pannu & Read, 1996). The �A

values for this initial cycle were calculated according to

�A = exp(ÿ150s2). In subsequent cycles, each containing

10 000 steps of dynamics, we used the phase-restrained

maximum-likelihood crystallographic restraint (MLHL;

Pannu et al., 1998) with target phases and ®gures of merit

derived from averaging the structure-factor sets of the indi-

vidual models. To this end, all individual structures were ®rst

placed on a common origin using the phased-translation

function. Figures of merit (ma) were computed per resolution

shell using only test-set re¯ections: m0a =
PN

i�1 Fi=
PN

i�1 jFij,
where Fi were calculated structure factors from an individual

model, and were extrapolated to in®nite models by

ma = {[N(m0a)2 ÿ 1]/(N ÿ 1)}1/2. For each individual model, we

estimated �A values per resolution shell. We assumed that the

true phase error of a model would be related to phase

differences of that model to any other model,

�i
A � h�ij

Aij � hjEobsjjEij cos�'i ÿ 'j�i=�hjEobsj2ihjEij2i�1=2

 �

j
:

These estimates were calculated using all re¯ections because

the low numbers of re¯ections in the test set alone yielded

unstable results.

Calculations were performed on 667 MHz single-processor

Compaq XP1000 workstations with 1±2 Gb of memory. The

CPU times for automated model building are given in Table 2.
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Table 2
Statistics of automated model building of three crystal structures at medium to low resolution.

vWF-A3 (2.4 AÊ ) NspA (2.6 AÊ ) LAPP (3.0 AÊ )

CO ARP RESOLVE CO ARP RESOLVE CO ARP RESOLVE

No. residues built 148 160 170 121 130 101 169 232 136
Fraction built (%) 80 87 93 78 84 65 64 87 51
No. chains 20 8 4 16 6 10 38 11 13
R.m.s.d.² (AÊ ) 1.5 1.9 0.9 1.3 1.8 0.9 1.2 1.3 1.8
h�'i³ (�) 27.2 36.0 23.9 (22.7)§ 35.8 33.6 42.4 (35.6) 25.4 27.9 56.5 (26.0)
hcos(�')i} 0.67 0.56 0.72 (0.69)§ 0.53 0.60 0.46 (0.52) 0.67 0.64 0.32 (0.66)
CPU (h) 36 1 15 38 2.5 18 105 1.5 14

² Root-mean-square coordinate deviations, or coordinate errors, were calculated based on the distance between atoms in modelled protein fragments to the nearest atom with a
corresponding atom label in the re®ned structure. ³ Amplitude-weighted mean phase error calculated with respect to the re®ned structures. § For RESOLVE, the phase errors of
the resulting electron-density maps are given in parentheses. } Unweighted mean cosine of the phase error with respect to the re®ned structures. For calculation of both amplitude-
weighted and unweighted phase errors all atoms of the resulting models were taken into account, i.e. for models generated by conditional optimization (CO) or ARP/wARP (ARP) atoms
that were not recognized as part of a protein fragment were also included.

Table 1
Statistics of the three test cases for automated model building.

vWF-A3 NspA LAPP

Data statistics
Space group P212121 R32 P4322
Resolution limit (AÊ ) 2.4 2.6 3.0
I/�(I) in outer shell 10.7 5.2 2.6
Completeness (%) 99.7 98.5 96.6
No. re¯ections 6404 9768 11402
Phasing methods MAD SAD + DM SIRAS + DM
h�'i² (�) 35.6 38.3 28.2
hcos(�')i³ 0.59 0.49 0.63

Model statistics
Z 1 1 3
No. residues 183 155 264
Solvent content (%) 35 70 70

Input to Conditional Dynamics
No. atoms 1450 1200 2200
Secondary-structure content
(% �, % �, % loop)

50, 30, 20 0, 75, 25 40, 60, 0

² Amplitude-weighted mean phase error calculated with respect to the re®ned
structures. ³ Unweighted mean cosine phase error.
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Ab initio modelling calculations took more than 100 d of CPU

time.

3. Results and discussion

3.1. Model-building tests

We compared automated model building by Conditional

Optimization, which did not include any discrete decision-

making steps, with the commonly used automated building

programs ARP/wARP and RESOLVE. Models were built for

three test cases, vWF-A3, NspA and LAPP, with data to d = 2.4,

2.6 and 3.0 AÊ resolution, respectively. Criteria for comparison

were model completeness, correctness of the trace, accuracy of

the positioned fragments assessed by r.m.s. coordinate errors

and quality of the phases computed from the models. Statistics

of the automatically built models are given in Table 2. C�

traces of the generated models are given in Fig. 2. Coordinate

Figure 2
C� traces of automatically built models (black lines) overlaid with traces of the re®ned structures (grey lines): models of the vWF-A3 domain (using
diffraction data to 2.4 AÊ resolution) obtained by Conditional Optimization (a), ARP/wARP (b) and RESOLVE (c); models obtained for NspA (with
data to 2.6 AÊ resolution) by Conditional Optimization (d), ARP/wARP (e) and RESOLVE (f ); superposition of the three models of three independent
molecules of LAPP determined at 3.0 AÊ resolution by Conditional Optimization (g), ARP/wARP (h) and RESOLVE (i).



®les for the nine generated models and for the three re®ned

models used in the analysis have been submitted as supple-

mentary material.1

For vWF-A3, automated model building was tested using

data to 2.4 AÊ resolution and experimental phases with an

(amplitude-weighted) mean phase error of 35.6�. ARP/wARP

and RESOLVE built more complete and less fragmented

models than did Conditional Optimization (Figs. 2a±2c).

RESOLVE produced the best model that was most complete,

missing only one loop and a small �-helix, had the smallest

r.m.s. coordinate error and the lowest mean-phase error. The

model from ARP/wARP missed one �-helix, one �-strand and

two loops. It had a relatively large coordinate error and the

phases computed from the model were not better than the

experimental phases. Conditional Optimization yielded a

fragmented model consisting of almost all �-helical and

�-strand segments, except the one small

�-helix that was also missed by the other

two programs. Only one of the loops was

modelled correctly. Another loop was

modelled with a reversed chain direction, as

was a small �-strand which ¯anks the central

�-sheet. Notwithstanding these errors, the

model from Conditional Optimization was

more accurate and yielded better phases

than the model from ARP/wARP.

For NspA (Figs. 2d±2f), using data to

2.6 AÊ resolution and experimental phases

with an (amplitude-weighted) mean phase

error of 38.3�, Conditional Optimization

built most of the strands in the �-barrel, but

none of the turns. The largest errors in this

model were reverse chain directions for an

entire �-strand and two smaller �-strand

fragments. In this case, ARP/wARP

produced the most complete model and the

lowest phase error, though the model

included two �-strands with reversed chain

directions. RESOLVE built a smaller

portion of the molecule with a strand that

crossed over into a neighbouring strand. The

mean-phase error using calculated phases

from this model was relatively large,

possibly re¯ecting the incompleteness of the

model produced by RESOLVE.

The data from LAPP represent a situa-

tion in which automated model building

generally does not work owing to the limited

resolution (3 AÊ ) of the diffraction data.

However, solvent ¯attening and threefold

non-crystallographic symmetry averaging

yielded high-quality phases with an (ampli-

tude-weighted) mean-phase error of 28.2�.

Conditional Optimization (Fig. 2g) yielded a model with

partially built �-sheets and most �-helical segments of the

three molecules in the asymmetric unit. Reversed chain

directions were observed for some of the �-strands and for one

�-helix; one of the loops was also modelled incorrectly by an

�-helical turn (note: in this particular case loops were omitted

from the force ®eld). This model had a fairly low r.m.s. coor-

dinate error and good phase quality. ARP/wARP built a more

complete model with more �-strands and more loops (Fig. 2h).

One incorrect main-chain trace from an �-helix to a neigh-

bouring �-strand was observed in this model. This model

yielded a phase error comparable to that obtained with

conditional optimization. As for NspA, RESOLVE (Fig. 2i)

produced the model with the lowest completeness. In addition,

this model had a low accuracy of the positioned fragments and

a high mean-phase error. It contained more main-chain trace
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Figure 3
Structures of Alpha-1 obtained by ab initio modelling against 2 AÊ resolution data. (a)
Stereoview of a ball-and-stick representation of an optimized model after the initial
condensation using 1000 steps of conditional dynamics using the MLF target function; (b) C�

trace of 17 models obtained after 25 cycles of optimization (black lines) with the C� trace of the
re®ned structure overlaid (grey lines); (c) stereoview of the C� trace of the model with the
highest �A value. From left to right the helices are oriented down, up, down and up in the
re®ned structure (the position of the N-terminus is indicated by a ball). The chain directionality
in the depicted model is therefore from left to right: incorrect, incorrect, correct and correct.
Assignment of atom labels (for b and c) was based on the gradient contributions in Conditional
Optimization (as described in the main text for automated model building).

1 Supplementary data have been deposited in the IUCr
electronic archive (Reference BA5060). Methods for
accessing these data are described at the back of the
journal.
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errors than the models built by either Conditional Optimiza-

tion or ARP/wARP.

These three cases clearly demonstrate that Conditional

Optimization can produce models of comparable complete-

ness and comparable phase quality as ARP/wARP and

RESOLVE. The models from Conditional Optimization have

signi®cantly lower connectivity and contain fewer loops and

turns. Similar to ARP/wARP and RESOLVE, an increase in

connectivity would be most ef®ciently achieved by introducing

discrete model-completion steps. Moreover, unsuccessful

modelling of turns and loops re¯ects the currently limited

conditions de®ned for turn and loop conformations in the

conditional force ®eld. The worst aspect of Conditional

Optimization is the excessive amount of CPU time and

computer memory required.

3.2. Ab initio modelling

The possibility of phasing protein structures by ab initio

modelling was explored using experimental `real' diffraction

data of the four-helical bundle Alpha-1 (PriveÂ et al., 1999), cf.

the tests of ab initio phasing using arti®cial data in Scheres &

Gros (2001). We chose to perform parallel optimization of

multiple random models and used the set of models in two

ways: (i) the variation among the multiple models provided an

indication of the statistical relevance of the individual models

and (ii) averaging the individual structure-factor sets provided

phases that were used as phase restraints in the MLHL crys-

tallographic target.

36 models with randomly distributed atoms were ®rst

subjected to 1000 steps of Conditional Optimization with MLF

re®nement (see Fig. 1b). In this cycle, the random atoms of

most models condensed into four rod-like structures corre-

sponding to the lowest resolution features of the diffraction

data (see Fig. 3a). Of these 36 initial optimization runs, three

runs did not ®nish owing to the formation of extensively

branched structures requiring more computer memory than

was available. 17 models were selected which appeared to

have a common hand in an analysis based on the phased

translation function. However, a posteriori analysis showed

that these models did not yet have a signi®cant handedness to

allow a useful selection to be made. Subsequently, the selected

17 models were subjected to 25 optimization cycles of 10 000

steps each using a MLHL crystallographic target function

(Fig. 1b). Initially, the estimated values of the ®gures of merit

(ma) for the averaged structure factors and �A values for the

individual models behaved well when analyzed using the

phases of the re®ned model (see Fig. 4). However, after seven

cycles the ®gures of merit ma were increasingly overestimated.

Similarly, the �A values were overestimated from cycle ten

onwards. Since the overestimation of ma appeared to coincide

with a drop in convergence (as judged by the map-correlation

coef®cients depicted in Fig. 5a), we decided to continue from

cycle 7 with ®xed ®gures of merit ma. Fixed and low values for

ma also avoided subsequent overestimation of the �A values.

Under these conditions, we observed a slow but steady

convergence, as indicated by a �0.005 increase in map-

correlation coef®cient per cycle and an overall decrease in

Figure 5
Convergence in ab initio modelling of multiple models starting from
randomly distributed atoms. Map-correlation coef®cients (a) and overall
Fobs-weighted phase errors (b) to 2.0 AÊ resolution of the average
structure factors with respect to structure factors calculated from the
published structure. Solid lines show the results for the optimization
cycles with updated ®gures of merit (cycles 1±15). Dashed lines show the
results for the optimization cycles with ®xed ®gures of merit (cycles 7±25).

Figure 4
Figures of merit and �A values derived from multiple models. Figures of
merit ma (a) and �A values for one of the individual models (b) computed
for data up to 2 AÊ resolution over 15 cycles of optimization. Solid
lines represent the estimates used in our calculation; dashed lines
indicate the corresponding values, hcos ('ave ÿ 'calc)i and �A =
hjEobsjjEij cos�'i ÿ 'calc�i=h|Eobs|2ih|Ei|2i�, where 'ave is the phase of the
average structure factor, 'calc is the phase of the structure factors
computed from the published structure and 'i is the phase of the
individual model.



(amplitude-weighted) mean-phase error of the average

structure factors by �10� over 25 cycles (Figs. 5a and 5b). The

mean phase error after 25 cycles was 76.3� and the map-

correlation coef®cient was 0.37 for all data to 2 AÊ resolution.

Inspection of the models indicated the signi®cance of this gain

in phasing quality. An overlay of all 17 models showed that

right-handed helices have developed to a reasonable extent

(Fig. 3b). The best model, as identi®ed by the highest �A value,

had three and a half helices formed (see Fig. 3c).

This test of ab initio modelling was computationally

demanding, which seriously limited the testing of relevant

parameters. Nonetheless, the preliminary results presented

here clearly indicated the most prominent shortcomings of our

current approach. Throughout these calculations, the average

structure factors scored among the top three of the individual

sets of structure factors (i.e. top �20%) with respect to phase

quality. This justi®es the idea of using these phases as phase

restraints. Obviously, applying this information through the

MLHL target function introduces serious bias into the calcu-

lation. Though our �A estimates were without thorough

theoretical foundation, we observed a signi®cant correlation

(0.77 after cycle 25) between the estimated �A values and the

map-correlation coef®cients of the individual models. This

indicates that the use of multiple models for estimating the

statistical relevance holds promise.

4. Concluding remarks

From our ongoing effort to test the procedure, we have

presented two types of applications. The results from auto-

mated model building by Conditional Optimization compared

well with the commonly used programs ARP/wARP and

RESOLVE. Clearly, the resulting models from Conditional

Optimization could be improved with the appropriate model-

completion steps and better modelling of loop conformations.

Nonetheless, without discrete building steps our approach

already performed well. Our analysis also showed that going

from medium- to low-resolution data (from 2.4 to 3.0 AÊ ), the

three methods make increasingly more tracing errors, as

expected. Still, the models may be useful in a structure

determination when not taken fully at face value. Further-

more, it is conceivable that improved decision-making steps

may catch a number of the observed errors at low resolution,

possibly strand crossings and incorrect strand directionality,

which could be evaluated by testing both directions explicitly.

Nonetheless, at lower resolution limits and with poorer phase

information the process of model building will inherently

become more dif®cult. Results from the preliminary tests in ab

initio modelling by Conditional Optimization, i.e. without any

experimental phase information present, indicated the

obvious need for proper estimation of the quality of calculated

phases. The results obtained imply that a multiple-model

approach may bene®t signi®cantly from a multi-variate

treatment (see Read, 2001) that minimizes introducing bias

into the optimization process. Furthermore, an ab initio

modelling approach may bene®t from discrete model-building

steps, such as atom relocation in electron-density maps and

®xing atom assignments, which may speed up the modelling

process.

In conclusion, we have illustrated the potentials of Condi-

tional Optimization in both automated model building and ab

initio phasing of protein structures. Although currently at

excessive computational costs, Conditional Optimization

holds great promise for protein structure determination by

incorporating extensive geometrical prior information without

the necessity of an explicit interpretation of the electron-

density map.
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